ementary File 2. Summary of all studies included in scoping review in PICOS format (n=48) | al
rch | Region | Population | Intervention | Outcome Measures | ISSN
(Electronic) | Categorie | |-----------|--------|---|---|---|----------------------|--| | 2009 (21) | Japan | 32 nurses, doctors, and comedical personnel in 1 tertiary care hospital | Continuous use of surgical mask Control: no mask, unless required to do | Self-reporting of upper respiratory symptoms | 0196-6553 | Synthesis of
Results - Med
grade facial
protection;
Inpatient settin | | 2009 (22) | Canada | 446 nurses in emergency
departments, medical units,
and pediatric units in 8
tertiary care hospitals | Targeted use of fit-
tested N95 respirator Targeted use of
surgical mask | Primary: laboratory-
confirmed influenza | 1538-3598 | Synthesis of
Results - Med
grade facial
protection;
Inpatient settin | | tyre 2013 | China | 1,669 nurses and doctors in
68 wards from 19 hospitals;
cluster randomization by
ward | Continual use, fit-test
N95 respirator Targeted use, fit-
tested N95 respirator Control: continual
use, medical mask | Laboratory-confirmed respiratory infection Influenza-like illness | 1535-4970 | Synthesis of
Results - Med
grade facial
protection;
Inpatient settii | | tyre 2014 | China | 1,441 inpatient nurses and doctors from 15 hospitals Control: 481 nurses and doctors in 9 hospitals | Medical masks N95 respirators (fit and non fit tested) Convenience control group | Laboratory-confirmed bacterial colonization | 1096-0260 | Synthesis of
Results - Med
grade facial
protection;
Inpatient settin | | tyre 2015 | Vietnam | 1,607 inpatient hospital
healthcare workers from 14
hospitals | Medical masks Cloth masks Control group:usual practice, which included mask wearing) | Clinical respiratory illness Influenza-like illness Laboratory-confirmed respiratory virus infection | 2044-6055 | Synthesis of
Results -
Improvised ma | |-----------|-----------|--|---|---|-----------|--| | tyre 2011 | China | 1,441 inpatient nurses and doctors from 15 hospitals Control: 481 nurses and doctors from 9 hospitals | Medical masks N95 respirators (fit- and non-fit tested) Convenience control group | Self reported clinical respiratory infection Self reported influenza like illness Laboratory confirmed viral infection and influenza by PCR | 1750-2659 | Synthesis of
Results - Med
grade facial
protection;
Inpatient settii | | tyre 2017 | China | 3,591 inpatient nurses and doctors Control: 481 nurses and doctors from 9 hospitals (Pooled participants from MacIntyre 2011 and MacIntrye 2013) | Continuous N95 respirator use Targeted N95 respirator use Medical mask use Convenience control group | Laboratory-confirmed viral respiratory infection, influenza A or B Laboratory-confirmed bacterial colonization and pathogens grouped by mode of transmission | 1750-2659 | Synthesis of
Results - Med
grade facial
protection;
Inpatient settii | | 20 (28) | Singapore | 41 healthcare workers with
exposure to aerosol-
generating procedures
conducted on COVID-19
patient | Detection of SARS-CoV-2 by PCR assay | Exposures to aerosol generating procedures Type of mask worn Acquisition of SARS-CoV-2 infection | 1539-3704 | Synthesis of
Results - Med
grade facial
protection;
Inpatient settii | | ovich 2019 | United
States | 2371 nurses/nursing trainees, clinical support staff, physicians/advanced practitioners/physician trainees, registrations/clerical receptions, social workers/pastoral cares and environmental service workers/housekeepers from 137 outpatient study sites; cluster randomization by outpatient clinic or outpatient setting | Targeted use of fit-
tested N95 respirator Targeted use of
surgical masks Control: targeted use,
medical mask | Primary: Incidence of laboratory-confirmed influenza Secondary: Incidence of acute respiratory illness, laboratory-detected respiratory infections, laboratory-confirmed respiratory illness, and influenza-like illness | 1538-3598 | Synthesis of
Results - Med
grade facial
protection;
Outpatient set | |----------------|-----------------------------|---|--|---|----------------------|--| | Science
rch | Region | Entity or device studied | Intervention | Outcome Measures | ISSN | Categorie | | 2006 (11) | United
States,
Poland | 2 N95 respirator models and
2 surgical mask models | Exposure to viral particles during simulated inhalation | Fractional penetration of viral particles | 1527-3296 | Synthesis of
Results - Med
grade facial
protection;
Laboratory/co
led settings | | an 2010 | United
States | 6 N95 respiratory models | Three-cycle processing of 8 different N95 respirator decontamination methods, submersion in deionized water | Changes in physical
appearance, odor, and
filtration performance
(aerosol penetration and
airflow resistance) | 1558-9250
(Print) | Synthesis of
Results - Med
grade facial
protection; N9
respirator
decontaminati
procedures | | an 2012 | United
States | 6 N95 respirator models | 20 consecutive
donnings of each
model by 10 test | Percentage of donnings resulting in fit factor ≥100 | 1527-3296 | Synthesis of
Results - Med
grade facial | | | | | subjects | | | protection;
Extended use
reuse of N95
respirators | |-----------|------------------|---|---|---|-----------|---| | off 2011 | United
States | Masks worn by 28 healthy participants | Ocular exposure to
monodispersed live
attenuated influenza
vaccine (LAIV)
particles while
wearing 5 different
forms of facial
protection versus no
protection | Quantitative
measurement of LAIV
in post exposure nasal
wash by RT-PCR
and culture. | 1537-6613 | Synthesis of
Results - Med
grade facial
protection;
Laboratory/co
led settings | | ot 2012 | France | 2 models of N95 half-mask
respirators | Test-chamber exposure to aerosolized nanoparticles a manikin head with simulated human respiration with sealed and unsealed fit | Global protection factor
assessed by nanoparticle
filtration efficiency | 1537-6613 | Synthesis of
Results -
Improvised ma | | au 2010 | United
States | 35 subjects with no prior training or experience with N95 respirators | Subjects donned each of 2 respirator models under observation and underwent fit testing | Criteria for proper
donning procedures,
quantitative fit factors | 1545-9632 | Synthesis of
Results - Med
grade facial
protection;
Laboratory/co
led settings | | 2015 (29) | United
States | N95 respirators | Spreadsheet model estimating respirator use in epidemic and pandemic influenza scenarios | Respirator use | 1537-6591 | Synthesis of
Results - Med
grade facial
protection;
Inpatient settii | | ova 2010 | United
States | Survival of coronaviruses on
PPE using a surrogate,
transmissible gastroenteritis
virus | Virus inoculated on
material samples from
N95 respirators, latex
and nitrile gloves,
contact isolation
gowns, hospital
scrubs | Virus survival and inactivation at 2, 4, and 24 hours after inoculation | 1559-6834 | Synthesis of
Results - Med
grade facial
protection; N9
respirator
decontaminati
procedures | |-------------|-------------------|--|---|---|-----------|--| | ova 2013 | United
States | Inactivation of respiratory
virus surrogate,
bacteriophage phi6, on N95
respirators | Virus placed on
material samples from
N95 respirators | Virus survival and inactivation at every 2 hour time point after inoculation for 24 hours at 22C and 40% or 60% relative humidity | 1559-6834 | Synthesis of
Results - Med
grade facial
protection; N9
respirator
decontaminati
procedures | | 1 2004 | United
States | SARS-CoV inactivation methods | UV light, gamma
irradiation, heat,
formaldehyde and
glutaraldehyde, pH
analysis | Infectivity of viral RNA and virions | 1879-0984 | Synthesis of
Results - Med
grade facial
protection; N9
respirator
decontaminati
procedures | | 006 (52) | United
States | Handmade, reusable, cotton
mask
Control: N96 | Standard quantitative
fit test, the Portacount
Plus Respirator Fit
Tester with N95-
Companion | Fit factor | 1080-6059 | Synthesis of
Results -
Improvised ma | | ; 2013 (51) | United
Kingdom | Masks worn by 21 healthy volunteers | Homemade mask Surgical mask No mask | Facial fit factor Number of microorganisms isolated from healthy volunteer coughs while wearing a homemade mask, surgical mask, or no mask | 1938-744X | Synthesis of
Results -
Improvised ma | | k 2005 | Hong Kong | Masks worn by 6 healthy volunteers | Surgical mask worn in layers of 1, 2, 3, or 5 | Particle counts inside
and outside the mask | 1532-2939 | Synthesis of
Results - Med
grade facial
protection;
Laboratory/co
led settings | |------------|------------------|--|---|---|-----------|--| | 2003 (44) | China | 10 TCID (tissue culture infective dose) SARS-CoV-1 viruses in test environments (serum, feces, household surfaces) | UV irradiation and
heat application to
SARS-CoV-1 | Stability of SARS
coronavirus in human
specimens and in
environments
Resistance to
temperature and UV
irradiation | 2214-0190 | Synthesis of
Results - Med
grade facial
protection; N9
respirator
decontaminati
procedures | | hae 2017 | United
States | Surgical masks and N95
worn by 3 home health
workers | Surgical masks
compared to N95 FFR
respirators | Aerosol concentrations inside and outside the masks and respirators | 1545-9632 | Synthesis of
Results - Med
grade facial
protection;
Laboratory/co
led settings | | 2011 (41) | United
States | 6 N95 respirator models | Microwave steam bag
decontamination
(performed in 3
phases) | Limited filtration performance degradation; Low water retention; Filtration efficacy; decontamination efficacy | 1932-6203 | Synthesis of
Results - Med
grade facial
protection; N9
respirator
decontaminati
procedures | | h 2013 (9) | United
States | 5 N95 FFR models | Masks were challenged with aerosolized viable H1N1 influenza and inert polystyrene latex particles at continuous flow rates of 85 and 170 liters per minute | Filtration efficiency | 1559-6834 | Synthesis of
Results - Med
grade facial
protection;
Laboratory/co
led settings | | 2019 (7) | Korea | Efficacy of commercial face piece respirators against bacterial bioaerosols | N95, KF94 (airwasher), KF94 (Fintech), KF80 (3M9011), KF80 (3M9510), KF80/FFP1, KF80 (airwasher daily care), KMOL 2nd level, Kleenguard mask under various airflow velocity and relative humidity conditions | Filtration efficacy
against Staphylococcus
epidermidis and
Escherichia coli
bioaerosols, pressure
drop of the filter, and the
relative recovery rates
for the bacteria | 1879-1026 | Synthesis of
Results - Med
grade facial
protection;
Laboratory/co
led settings | |----------|------------------|--|--|---|-----------|---| | 108 (10) | United
States | 4 models of N95 respirators
and 3 models surgical masks
worn by 12 healthy subjects | N95, surgical mask
treated with NaCl
aerosols | Protection factor | 1475-3162 | Synthesis of
Results - Med
grade facial
protection;
Laboratory/co
led settings | | ey 2012 | United
States | Quantifying the spread of
bioaerosols and the efficacy
of different types of
respiratory personal
protective equipment (PPE) | No PPE, surgical
masks, N95 FFRs | Aerosol exposure,
influence of breathing
rate, room ventilation,
and location of coughing
and breathing
simulators | 1545-9632 | Synthesis of
Results - Med
grade facial
protection;
Laboratory/co
led settings | | ey 2014 | United
States | Efficacy of face shields in
reducing health care worker
exposure to aerosol droplets | No face shield- 46 cm
distance Face shield-
46 cm distance
No face shield- 183
cm distance Face
shield- 183cm
distance | Inhalational exposure of influenza laden aerosol particles sized 8.5 and 4.3 microns | 1545-9632 | Synthesis of
Results - Med
grade facial
protection;
Laboratory/co
led settings | | ey 2015 | United
States | Effects of disinfecting disposable N95 FFRs with UVGI | Four N95 FFRs
exposed to UVGI
doses 120-950 J/cm ² | Particle penetration,
flow resistance, and
bursting strengths of
individual respirator | 1545-9632 | Synthesis of
Results - Med
grade facial
protection; N9 | | | | | | coupon layers, and
breaking strength of
respirator straps | | respirator
decontaminati
procedures | |-----------|-------------------|--|--|---|-----------|--| | 012 (40) | United
States | Effectiveness of energetic decontamination methods on N95 FFRs | UVGI, microwave
generated steam, or
moist heat
decontamination on
two N95 FFR models | Viral load reduction
Filter performance
before and after
decontamination | 1475-3162 | Synthesis of
Results - Med
grade facial
protection; N9
respirator
decontaminati
procedures | | on 2013 | United
Kingdom | 8 UK surgical masks
designs | Inert particles and live
aerosolized influenza
virus | Measured levels of inert
particles and live
aerosolized influenza
taken from the air in
front of and behind each
mask type | 1532-2939 | Synthesis of
Results - Med
grade facial
protection;
Laboratory/co
led settings | | 2008 (55) | United
States | 20 test subjects Filter performance and facial fit of sample surgical masks | Nine varieties of
surgical masks used
in dental and hospital
settings | Filter penetration
Qualitative and
quantitative fit testing | 1527-3296 | Synthesis of
Results -
Improvised ma | | 2016 (17) | United
States | Assessing source protection versus receiver protection of surgical masks | Natural fit and
SecureFit surgical
masks, and N95
respirator with and
without Vaseline seal
on source versus
control | Aerosol exposure and mask filtration | 1545-9632 | Synthesis of
Results - Med
grade facial
protection;
Laboratory/co
led settings | | samy 2010 | United
States | 5 models of fabric masks | Monodisperse NaCl
aerosols
Polydisperse NaCl
aerosols measured at
2 different face
velocities (5.5 cm/s
and 16.5 cm/s) | Monodisperse aerosol
penetration of NaCl
particles
Polydisperse aerosol
penetration of NaCl
Penetration of large
NaCl particles (50-100 | 1475-3162 | Synthesis of
Results -
Improvised ma | | | | | | nm) | | | |----------------|------------------|---|--|--|-----------|--| | samy 2011 | United
States | NIOSH-approved N95 and
P100 and FFP2 and FFP3
filtering facepiece respirator
models sealed to a breathing
manikin kept inside closed
chamber | Monodisperse sucrose
aerosols generated by
electrospray or
polydisperse NaCl
aerosols produced by
atomization | Filter penetration Total inward leakage | 1475-3162 | Synthesis of
Results -
Medical-grade
facial protectic
Inpatient settin | | en 2011 | United
States | Subject-respirator
combinations that passed fit
testing with four N95FFR
models | Intervention: Fit
testing
Control: N95FFRs
which passed and
failed fit testing | Particle-size-selection protection factors of particles with aerodynamic diameter = 5 0.04–1.3 mm | 1475-3162 | Synthesis of
Results -
Improvised ma | | a 2017 | United
States | Three types of cloth masks One type of surgical mask Control: N95 mask | Five monodispersed aerosol sphere size (30, 100, and 500 nm, and 1 and 2.5 µm) and diluted whole diesel exhaust | Facemask performance
as assessed by filtration
efficiency | 1559-064X | Synthesis of
Results -
Improvised ma | | r Sande
50) | Netherlands | 28 healthy adult volunteers,
11 children aged 5-11 years | FFP2 mask (N95 equivalent) Surgical mask Tea cloth mask | Protection factor calculated from measurements of particle concentration, reported as the ratio of particle concentrations outside and inside the mask | 1932-6203 | Synthesis of
Results -
Improvised ma | | i 2009 | United
States | Nine models of NIOSH-
certified respirators (three
models each of N95 FFRs,
surgical N95 respirators,
P100 FFRs) | Ultraviolet germicidal irradiation, ethylene oxide, vaporized hydrogen peroxide, microwave oven irradiation, bleach | Changes in physical
appearance, odor, and
laboratory performance
(filter aerosol
penetration and filter
airflow resistance) | 1475-3162 | Synthesis of
Results - Med
grade facial
protection; N9
respirator
decontaminati | | | | | | Dry heat laboratory oven
exposures, off-gassing,
and FFR hydrophobicity | | procedures | |------------|-------------------|---|---|---|----------------------|--| | i 2011 | United
States | N95 respirators worn by 10 human subjects who passed a standard OSHA quantitative fit test of N95 | Ultraviolet germicidal irradiation, heat incubation, microwave-generated steam | N95 fitting
characteristics, odor,
comfort, or donning ease
after interventions | 1545-9632 | Synthesis of
Results - Med
grade facial
protection; N9
respirator
decontaminati
procedures | | ii 2007 | United
States | Effects of decontamination
methods to filtering
facepiece respirators (N95 or
P100) | Ten commonly available decontamination methods (chemical and non-chemical) at two different conditions Controls: No decontamination, water | Initial instantaneous
filtration performance of
FFR measured by
particle penetration | 0892-6298 (Print) | Synthesis of
Results - Med
grade facial
protection; N9
respirator
decontaminati
procedures | | 013 (14) | China | Filtration of aerosolized bacteriophage SM702 viral samples | Surgical mask (5 models) N95 respirator (1 model) N99 respirator (2 models) | Measurement of viral
aerosol concentration
before and after
filtration | 0393-5965 (Print) | Synthesis of
Results -
Medical-grade
facial protectic
Laboratory/co
led settings | | dary
ch | Region | Population | Intervention | Topics reviewed | ISSN
(Electronic) | Categorie | | n 2013 | United
Kingdom | Healthcare workers | Respiratory and facial protective equipment | Efficacy of surgical masks and respirators | 1532-2939 | Synthesis of
Results - Med | | | | | | for prevention of respiratory infection | | grade facial
protection;
Laboratory/co
led settings | |-----------|------------------|--------------------|--|--|-----------|---| | 2014 (31) | United
States | Healthcare workers | N95 FFR extended use and reuse | Risks of extended use
and reuse of N95 FFR | 1545-9632 | Synthesis of
Results - Med
grade facial
protection;
Inpatient settin | | ge 2016 | United
States | Healthcare workers | Face shields as adjunctive PPE | Design and structure;
research; regulatory
standards; guidelines;
selection of face shields;
proper use of face
shields | 1545-9632 | Synthesis of
Results -
Medical-grade
facial protectic
Laboratory/co
led settings | | ge 2008 | United
States | Healthcare workers | Surgical masks worn
concurrently over
N95 filtering
facepiece respirators | Respiratory resistance;
hypercapnia and
hypoxemia; heat;
infection risk;
communications;
regulatory issues | 1550-5022 | Synthesis of
Results - Med
grade facial
protection;
Inpatient settii | llowing classification system was used for study design: a) Clinical research: Randomized control trials (RCTs), case reports, b) Basic research: surroure studies, device or material performance studies, virology studies, and theoretical model studies, c) Secondary research: narrative reviews. Grey ire is not included in this table and can be found in the reference list.